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[1] A newly proposed geoelectrical model for hydrocarbon
contaminated sites predicts high conductivitics coincident
with the contaminated zone as opposcd to the traditionally
accepted low conductivity. The model attributes the
high conductivities to mineral weathering resulting from
byproducts of microbial redox processes. To cvaluate
this conductive model, in situ vertical conductivity
measurements were acquired from a light non-aqueous
phase liquid (LNAPL) contaminated site. The results
showed high conductivities coincident with the zone of
contamination and within the smear zone influenced by
scasonal water table fluctuations. We infer this zone as an
active zone of biodcgradation and suggest significant
microbial degradation under partially water saturated
conditions. A simple Archie’s Law analysis shows large
pore water conductivities nccessary to reproduce the bulk
conductivity measured at the contaminated location. This
study supports the conductive layer model and demonstrates
the potential of geoelectrical investigations for assessing
microbial degradation of LNAPL impacted soils. INDLX
TERMS: 5109 Physical Properties of Rocks: Magnctic and electrical
properties; 0915 Exploration Geophysics: Downhole methods;
1831 Hydrology: Groundwater quality. Citation: Werkema, Jr.,
D. D, E. A. Atekwana, A. L. Endres, W. A. Sauck, and D. P.
Cassidy, Investigating the geoelectrical response of hydrocarbon
contamination undergoing biodegradation, Geophys. Res. Lett.,
30(12), 1647, doi:10.1029/2003GL0O17346, 2003,

1. Introduction

[2] Studics conducted on the geophysical detection of
hydrocarbon contaminants have based interpretation on the
insulating layer model [e.g., Lien and Enfield, 1998]. This
interpretation is intuitive as hydrocarbons that displace the
groundwater are electrically resistive. However, recent find-
ings at sites impacted with hydrocarbons for decades show a
conductive response, characterized by low apparent resis-
tivities/high conductivities [e.g., Atekwana et al , 2000] and
attenuated GPR reflections [e.g., Bermejo et al., 1997).
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[3] In view of these field observations, a new conceptual
model (hercin named the conductive layer model) linking
the conductive response to the cffects of biodegradation
processes has been proposed [Sauck, 2000]. High bulk
conductivity is hypothesized to be caused by high porc
water conductivity due to higher total dissolved solids
(TDS) in groundwater which resulted from enhanced mine-
ral weathering accompanying the production of carbonic
and organic acids during biodegradation. The role of organic
acids and microbial activity in promoting mineral dissolu-
tion in hydrocarbon contaminated aquifers is well docu-
mented [e.g., McMahon et al., 1995]. This study is driven to
evaluate the conductive and insulating layer models and to
advance the understanding of the geoelectrical response at a
sitc impacted with light non-aqueous phase liquid (LNAPL)
contamination.

[4] Vertical conductivity profiles are used to measure the
vertical geoelectrical distribution. Because of the difficult
task in geochemical sampling from the immiscible contami-
nant zone under saturated and partially saturated conditions,
vertical geoelectrical profiles may provide an indirect ob-
servation of the processes in this zone. The profiles are
analyzed using simple Archie’s Law rclationships to com-
pare the two competing modcls.

[5] The study site is adjacent to a former refinery, the
Crystal Refinery in Carson City, Michigan, which leaked
mostly jet and diesel fuel, since 1945. The geology consists
of 4.5 to 6.1 m of glacially derived unconsolidated fine to
medium grained sands, coarsening at and below the water
table to gravel and underlain by a 0.61 to 3.05 m thick clay
aquitard unit. Due to topographic variations, depth to
groundwater ranges from approximately 1 to 4 mcters.
Contamination occurs in the residual, free, and dissolved
phases as defined previously [U.S. EPA4, 1992] and applied
to LNAPL. In 1994, the frec phase plume (referred here as
the plume core) was approximately 229 m long and aver-
aged 82 m wide with a thickness between 0.3 to 0.6 m and
an cstimated volume of 167,200 liters [Snell Environmental
Group, 1994]. The fringe zone, characterized by residual
and dissolved phase hydrocarbons, is approximately 70
meters beyond the edge of the plume core.

6] Recent geochemical investigations suggest that intrin-
sic biodegradation is occurring in groundwater at the site
[Legall, 2002]. Microbial studics of soil cores collected
monthly for one year and completed to depths within the
saturated zonc have documented microorganisms capable of
degrading hydrocarbon and show orders of magnitude
increase in alkane degrading microorganisms in the hydro-
carbon impacted zones [Cassidy et al., 2002, Werkemu et
al., 2000]. Mcthanogenesis is the dominant redox process
within the core of the contamination, while sulfate, iron, and
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manganese reduction occur at the fringes of the contamina-
tion [Legall, 2002]. Volatile organic acids and biosurfactants
have been detected in the contaminated groundwater at this
site [Cassidy et al., 2002].

2. Results

[7] Apparent resistivity data were collected using in situ
vertical resistivity probes (VRPs) installed in contaminated
and uncontaminated portions of the aquifer. A total of ten
VRPs (4 in free phase, 4 in residual and dissolved, and 2 in
uncontaminated locations) were installed from the ground
surface to depths at or near the top of the clay aquitard.
Measurements were collected monthly for 15 months using
a Wenner array with 5.08 cm spacing and collected at 5.08
cm increments. The results are repeatable, showing some
fluctuations due to natural hydrologic events. Those data,
the collection methodology, sediment cores, grain size
analysis, LNAPL distribution, and the water level data have
been described elsewhere [Werkema, 2002]. Representative
VRP profiles from September 2000 are shown in terms of
conductivity in Figures 1 and 2. Those figures include the
grain size and LNAPL distribution from cores collected
within a 50—100 cm radius from the VRP installations
[Werkema, 2002].

[s] The grain size distribution determined the percentage
gravel (>4.8 mm), sand (4.8-0.06 mm), and silt/clay
(<0.06 mm) fractions after drying to a constant weight at
105°C and using sampling intervals of either 15 or 30 cm.
Figure 1 is the conductivity profile within the core of the
plume. At approximately 225.7 m elevation and coincident
with the first encounter of contamination, the conductivity
profile (Figure 1¢) shows a steep increase from approximate-
ly 0.3 mS/m to 15 mS/m over a 0.5 m elevation change.
Decreasing in elevation, the conductivity profile progres-
sively increases reaching a maximum of approximately 37
mS/m at 224.9 m. This point correlates with the free (i.e.,
floating) LNAPL layer (Figure 1b) and occurs near the
water table-free LNAPL interface. Below this conductivity
maximum, the profile decreases to approximately 18 mS/m
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Figure 1. Profiles for the Contaminated Location, (a)
Grain Size Distribution, (b) LNAPL Distribution, (c)
Conductivity Profile.
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Figure 2. Profiles for the Uncontaminated Location, (a)
Grain Size Distribution, (b) LNAPL Distribution, (c)
Conductivity Profile.

through the saturated zone that contains dissolved LNAPL
and a zone of submerged residual T.NAPI. (Figure 1h). This
subageuous immiscible phase represents LNAPL adsorbed
on the soil grains at lower water levels [Werkema, 2002]
that occurs from 224.8 m to approximately 224.5 m
elevation. The grain size data in Figure la shows a change
in grain size from predominantly sand to sand and gravel
occurring at 224.5 m elevation. This change occurs 0.5 m
below the zone of maximum conductivity suggesting that
the conductivity profile is not significantly affected by
variations in lithology. The clay aquitard was reached by
the VRP at approximately 223.7 m.

[¢9] The conductivity profile at an uncontaminated loca-
tion (Figure 2¢) shows a gradual increase due to the
presence of the transition zone above the saturated zone
(~225 m). Below the water table, the conductivity values
remain at the relatively constant maximum value of
approximately 17 mS/m. Those data reveal no steep con-
ductivity gradients or zone of maximum. In fact, over a two
fold increase in maximum conductivity was observed at the
contaminated location relative to this uncontaminated loca-
tion. This location also shows a uniform grain size distri-
bution until approximately 224 m elevation (Figure 2a) that
appears to have little aflect on the conductivity profile. The
clay aquitard was not reached by this VRP.

3. Analysis

[10] The empirical Archie’s Law [Archie, 1942] is given
by
O =ad™ S, o, (1)

where o, is the effective conductivity of the medium, ¢ the
porosity, S,. the water saturation, o, the pore water
conductivity, m the cementation exponent, n the saturation
cxponent and « is an empirical factor. Since grain size
analysis revealed no appreciable amounts of silt or clay
(Figures la and 2a) Archie’s Law is applicable. To analyze
the conductivity profiles at both locations, we have assumed
the only variables are water saturation (S,,) and pore water
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Figure 3. Estimated Water Saturation Profiles (a) Con-
taminated Location including LNAPL Distribution. (b)
Uncontaminated Location. Vertical line shows §,, = 100%.

conductivity (o,,). This approach implicitly assumes the
porosity and pore structure arc uniform throughout the
aquifer (i.e., ¢, a, m and n are constants).

[11] Our first analysis assumes changes in conductivity
were due entirely to variations in S,, while o, remains
constant. This approach is consistent with the insulating
layer model for LNAPL pools as the resistive LNAPL
displaces the more conductive water decreasing water
saturation. Consider the effective conductivity, o.(z), at
elevation z along the VRP profile and the effective conduc-
tivity in thc uncontaminated saturated zone, 624 From
equation (1) the apparent water saturation S,(z) required
to account for the effective conductivity o.(z) is given by

$6) = ot for" )

When no independent information is available, » is
commonly assumed to be 2 [Schon, 1996]. The unconta-
minated saturated zone conductivity profile suggests that
the average effective conductivity is o, = 17.4 mS/m.

[12] Figure 3a, shows excessively high calculated water
saturation S,,(z) values (up to 150%) that are coincident with
the zone of free LNAPL that occurs near the water table.
These excessively high water saturation values remain
greater than 100% throughout the free LNAPL layer and
below through the subageuous residual LNAPL layer and
dissolved LNAPL zone to approximately 224 m elevation.
In comparison, Figure 3b from the uncontaminated site
clearly shows a typical water saturation profile. While
Figure la does show grain size increase at approximately
224.6 m, which may result in an increase in the porosity and
possibly contribute to the increasing conductivity, we note
that this elevation is well below the zone of enhanced
conductivity as presented in Figure 4.

[13] According to the insulating layer model, unrealisti-
cally high water saturations (i.e., ~150%) are required to
account for the VRP conductivity measurements in the
contaminated zone. This is inconsistent with the displace-
ment of pore water by LNAPL which is expected to lower
the water saturation. Hence, we infer that varying water
saturation in the insulating layer model cannot account for
the anomalously high conductivity in the contaminated
zone.

[14] Next, we examine the effects of changing pore water
conductivity, ¢,. To perform this analysis, we assume the
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water saturation profile relative to the water table, S,(z), is
the same at both locations. Hence, the conductivity profiles
for each location were aligned such that the water table
positions were coincident prior to performing this analysis.

[ts] It follows from Archie’s Law that the pore water
conductivity ratio between the contaminated and uncontam-
inated locations (o4(z) and o, (2), respectively) at a given
depth relative to the water table is given by

ou{z) _ ai(z) 3)
ou(z)  ar(z)’

where ol(z) and o¥‘(z) are the ecffective conductivity
profiles at the contaminated and uncontaminated locations.
Obviously, our assumption about S,(z) will lead to an
overestimate of S,, in the contaminated aquifer material
where the immiscible contaminant has displaced the pore
water. This approach will underestimate o.,(z) over the
contaminated region. Hence, this analysis yields a lower
limit for the pore water conductivity in the LNAPL
impacted zone required to satisfy the conductivity
measurements.

[16] The estimated pore water conductivity ratio, o%.(z)/
o (z) is presented in Figure 4; four important observations
are made from this figure. First, the highest estimated pore
water conductivity suggests a 5.5 fold increasc over equiv-
alent uncontaminated locations. Second, the zone of elevated
conductivity (approximately [.25 m thick) occurs within the
tension saturated zone and extends into the upper parts of
the saturated zone (224.5-225.75 m). This region of ele-
vated conductivity is essentially coincident with the hydro-
carbon smear zone resulting from water table fluctuations.
Third, the zone of maximum elevated conductivity occurs
above the water table and within the upper residual LNAPL
zone (225.7—225.2 m). If the high conductivity is the result
of biodegradational processes, then we infer from this
observation that the residual product zone is the site of
most active biodegradation. Previous investigations at this
contaminated location support this inference and show the
alkane degrading population maximum [Werkema et al.,
2002]. Additionally, geochemical studies show an influx of
nutrients which could result in greater biological activity
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Figure 4. Estimated Pore Water Conductivity Ratio
Profile: Contaminated/Uncontaminated. Vertical line at 1
is the reference base line.



49 -4

and is consistent with high CO, concentrations observed
within this zone [Legall, 2002]. Lastly, the spatial variability
(vertically) of the conductivity profile within the zone of
LNAPL impact corresponds to the elevations of the differ-
ent LNAPL zones and not to changes in grain size.

4. Discussion and Conclusions

[17] This study found that variations in water saturation
(1.e., the insulating model) could not account for the
observed conductivity profiles. Further, analysis found the
conductive layer model required a minimum 5.5 fold
increase in pore water conductivity relative to the uncon-
taminated location to explain the conductivity profiles. This
increase is consistent with a laboratory slurry experiment
that showed a factor of 6 increase [Cassidy et al., 2001]. We
further show that for the contaminated location, less than a
1.5 fold increase in pore water conductivity occurs below
the water table, which agrees with geochemistry data that
shows groundwater conductance ~ 1.4 times greater [Legall,
2002]). Legall [2002] further showed clevated concentra-
tions of Si, Ca, Mg, Na, HCO;  at the contaminated
locations relative to uncontaminated conditions. This is
consistent with enhanced dissolution of the aquifer miner-
als. The above findings arc supportcd by McMahon et al.
[1995] that showed the concentration of dissolved organic
acids from microbial degradation of hydrocarbons positive-
ly correlated with dissolved silica. Finally, clevated popu-
lations of oil degrading bacteria have been documented at
this ficld site coincident with the zone of elevated conduc-
tivity [ Werkema et al., 2000], which suggest a possible link
between the conductive pore water and the biological
activity.

[18] The conductivity increase correlated with locations
of LNAPL contamination is observed at other sites where
the geology 1s uniform sand [Bermejo et al., 1997] and
heterogeneous glacial deposits [Atekwana et al., 2002].
Therefore, this conductivity increase is not unique to this
site or this work. Furthermore, a conductivity increase
associated with LNAPL contamination has recently been
reported by other investigators [Shevnin et al., 2003; Brad-
ford, 2003].

[19] The findings of this study not only corroborate the
conductive layer model and provide an indication into the
biologically driven mechanism, they suggest that the vertical
position of the high conductivity anomaly occurs in partially
water saturated conditions above the water table. The fluc-
tuating water table likely smears the LNAPL potentially
making it more readily available for microbial activity [Lee
el al., 2001]. Il the magnitude of conductivity observed in
this study is an indirect measure of biological activity
through changes in porc water geochemistry, then our
geophysical data suggests that the zone of most active
biodcgradation occurs above the water table and not below
as is conventionally studied. Thus, this zone of cnhanced
conductivity, observed geophysically, can be more effective-
ly investigated for geochemical and/or biological processes.

[20] Acknowledgments. Funding by AAPG Grants-In-Aid, NASA
Michigan Space Grant Consortium, Western Michigan University and the

WERKEMA ET AL.: HYDROCARBON CONTAMINATION GEOELECTRICS

American Chemical Society-Petroleum Rescarch Fund Grant (PRF No.
31594-AC2) and NSF Grant DUE-9550974. The U.S. EPA through its
Office of Rescarch and Development collaborated in this research. It has
been subjected to the Agency’s review and approved for publication.

References

Archie, G. E., The Electrical Resistivity Log as an Aid in Determining
Some Reservoir Characteristics, Transactions of the American institute
of Mining, Metallurgical and Petroleum Eng., 146, 54-62, 1942,

Atekwana, L. A., W. A. Sauck, G. Z. Abdel Aal, and D. D. Werkema Jr.,
Geophysical investigation of vadose zone conductivity anomalies at a
hydrocarbon contaminated site: Implications for the assessment of intrin-
sic bioremediation, J. Environmental and Enginecring Geophysics, 7(3),
102-110. 2002.

Atckwana, E. A, W. A, Sauck, and D. D. Werkema Jr.. Investigations of
geoclectrical signatures at a hydrocarbon contaminated site, J. Applied
Geophyysics, 44, 167—-180, 2000.

Bermejo. I. L., W. AL Sauck, and E. A. Atckwana, Geophysical Discovery
of a New LNAPL Plume at the Former Wurtsmith AFB, Oscoda, Michi-
gan, Ground Water Monitoring & Remediation, XVII(4). 131 137.1997.

Bradford, J. H.. GPR offset dependent reflectivity analysis fo characteriza-
tion of a high-conductivity LNAPL plume, Proceedings of the Svmpo-
sium on the Application of Geophysics to Engineering and Environmental
Problems (SAGEEP '03), 238-252, 2003.

Cassidy, D. P, A. Hudak, D. D. Werkema Jr., S. Rossbach, J. W. Duris,
F. A. Atckwana, and W. A_ Sauck. In Situ Rhamnolipid Production At
An Abandoned Petroleum Refinery, J. Soil and Sediment Contamination,
11(5), 787--796, 2002.

Cassidy, D. P, D. D. Werkema, W. A. Sauck, E. A. Atekwana, S. Rossbach,
and J. Duris, The effects of LNAPL biodegradation products on electrical
conductivity measurements, J. Environmental and Engincering Geophy-
sics, 6, 47--52, 2001.

Lee. J. Y., 1. Y. Cheon., K. K. Lee, S. Y. Lec, and M. H. Lec. Factors
affecting the distribution of hydrocarbon contaminants and hydrogeo-
chemical parameters in a shallow sand aquiter, J. Contam. Hyvdrol.,
5001 2), 139 158, 2001.

Legall, F. D., Geochemical and Isotopic Characteristics Associated with
High Conductivities in a Shallow Hydrocarbon-contaminated Aquiter,
Ph.D. Dissertation - Western Michigan Univ., 1-85, 2002.

Lien. B. K.. and C. G. Enficld. Delineation of subsurface hydrocarbon
contaminated distribution using a dircct push resistivity method, J. En-
vironmental and Engineering Geophysics, 2—3, 173-179, 1998.

Sauck, W. A.; A model for the resistivity structure of LNAPL plumes and
their environs in sandy sediments, J. Applied Geophysics, 44/2-3, 151 -
165, 2000.

Schon, J. H., Physical Properties of Rocks: Fundamentals and Principles of
Pctrophysics, 1996.

Shevnin, V., A. Mousatov, E. Nakamura-Labastida, O. clgado-Rodriquez,
J. Sanche-Osi, and H. Sanchez-Osio, Study of oil pollution in airports
with resistivity sounding, Proceedings of the Symposium on the Applica-
tion of Geophysics to Engineering and Environmental Problems (SA-
GEEP 2003), San Antonio, TX., puper CONO2, 180-189, 2003.

Snell Environmental Group, Technical Memorandum Task 1B-IRAP Evalua-
tion, Crystal Refinery. Carson City. Michigan, MERA ID #59003. 1994.
U. S. EPA, Estimating Potential for Occurrence of DNAPL at Superfund

Sites, EPA Pub. 9335.4-07FS, 1-9. 1992.

Werkema, D. D.. Geoelectrical Response of an Aged LNAPL Plume: Im-
plications for Monitoring Natural Attenuation, Ph. D. Dissertation - Wes-
tern Michigan Univ., 1 136, 2002.

Werkema, D. D.. A. Atckwana, W. Sauck, S. Rossbach, and J. Duris.
Vertical Distribution ot Microbial Abundances and Apparent Resistivity
at an LNAPL Spill Site, Proceedings of the Symposium on the Applica-
tion of Geophysics to Enginecring and Environmental Problems (SA-
GEEP 2000), 669 678, 2000.

D. D. Werkema Jr.. U.S. EPA. NERL, ESD. CMB, Las Vegas, NV, USA.
(werkema.d@epa.gov)

E. A. Atckwana, Department of Geology and Geophysics, University of
Missouri-Rolla, Rolla, MO, USA.

A. L. Endres, Env. Geophysics Facility, Dept. of Earth Sciences,
University of Waterloo, Waterloo, Ontario, Canada.

W. A. Sauck, Department of Geoscicnees, Western Michigan University,
Kalamazoo, MI, USA.

D. P. Cassidy, Universite Laval, Departement de Geologie et de Genie
Geologique, Quebee, Quebee, Canada.



